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Abstract: 

        The EGM96 harmonic model was previously refined to match Egypt better, based 

on the local gravity data in Egypt, by collocation. The refined model was given the name 

EGM96EGR. In the current study, the EGM96EGR model was compared with the 

EGM96 model, regarding the relevant harmonic coefficients as well as the associated 

error estimates. In addition, the two models were compared in terms of the relevant 

computed low degree geoidal heights, gravity anomalies and deflection components in 

the Egyptian territory. The comparison showed very significant differences between the 

two models. Again they were compared in two far test areas, one with and the other 

without data contribution to the EGM96 model. The discrepancy between the two models 

in both areas was found to be insignificant. A global spectral analysis was performed, 

involving the power spectra (degree variances) and error spectra, based on the 

coefficients and standard errors pertaining to both the refined and original model. Small 

differences were detected between the two models regarding the power spectra. However, 

the error degree variances (error spectra) of the refined model were greater than those of 

the original one.  

 

1 Introduction 

       In local gravity field modeling, the long wavelength information is a necessity. This 

can be obtained via a global geopotential model as a reference field. In this manner, not 

only the truncation error is reduced, but also the computational effort, which would 

theoretically involve the whole globe, is much limited. However, the long wavelength 

information could be reliably extracted from such harmonic model, only if it had local 

terrestrial gravity data contribution from the region under investigation. Unfortunately, 

the Egyptian terrestrial gravity data till now has not been incorporated in any of the 

several solutions for such global harmonic models (Amin, 2002). Hence, in a previous 

study made by the authors (Amin etal., 2002), the EGM96, as a high quality and high-

resolution harmonic model (Lemoine et al., 1996), was refined to fit Egypt better. The 

refinement based on using the local residual gravity data to predict low frequency 

corrections for the relevant spherical harmonic coefficients of the EGM96 model. Using 

the refined model as a reference field, an improvement of about 40% was achieved over 

the original model, regarding the local anomaly field smoothing. The general approach of 

the prediction of harmonic coefficients and their error estimates by collocation was 

thoroughly investigated and tested in (Tscherning, 2001). 
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      In the current investigation, the two models (the original and the refined) were 

compared, concerning the differences among the relevant harmonic coefficients as well 

as their associated error estimates. A further comparison was held, regarding their low 

frequency information at the nodes of 0.5˚X0.5˚ grids in Egypt and in two test zones far 

from Egypt. The first far geographical zone has local data contribution to the EGM96 

model (Kearsley et al., 1998), whereas the second one does not. The comparison involved 

the low degree geoidal heights, gravity anomalies and deflection components. Within the 

Egyptian region, for which the model was refined, very significant differences resulted 

between the refined and the original model, concerning all the four anomalous quantities. 

Conversely, both the two far zones exhibited very small discrepancies between the 

gravimetric quantities computed from the two models.  

 

        A spectral analysis was also performed for both the EGM96 and the EGM96EGR 

models involving degree variances (power spectra) and error degree variances (error 

spectra), based on the relevant harmonic coefficients and their associated standard errors, 

respectively. Namely, the coefficient, geoid and gravity anomaly power and error spectra 

were evaluated for the spectral range from degree 2 to 360. Small randomly oscillating 

(and damping) differences were observed among the power spectra, relevant to the 

refined and original model. However, the error spectra associated with the EGM96EGR 

model were considerably greater than that of the EGM96. 

 

2 Background 

 

           It is well known that when using a global harmonic model of a resolution up to 

degree and order 360, the relevant low degree gravimetric quantities, T, N, Δg, ξ and η, 

can be expressed by the following formulas 
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where 

 

T, N, Δg, ξ and η   are the relevant computed anomalous potential, geoidal height, gravity  

                              anomaly, deflection component in the meridian direction and                                       

                              deflection component in the prime vertical direction, respectively, 

ψ                            the geocentric latitude, 

λ                             the geodetic longitude, 

r                             the geocentric radius to the geoid, 

γ(ψ,r)                     the normal gravity implied by the reference ellipsoid, 

GM                        the Earth mass gravitational constant, 

a                             the equatorial radius, 

_        

C
*
nm                   the fully normalized spherical harmonic C-coefficients of degree    

                           n and order m, reduced for the even zonal harmonics of the   

                           reference ellipsoid,   

_ 

Snm                             the fully normalized spherical harmonic S-coefficients of degree    

                            n and order m, 

_ 

Pnm(sin θ)            the fully normalized associated Legendre function of degree n and  

                           order m. 

 

 

           The magnitudes of spherical harmonic coefficients are generally randomly 

damping as the degree increases. The square of any of the above expansions, at a specific  

degree, yields a relevant positive real number, which is referred to as the degree variance. 

This is evident from the orthogonality among the coefficients on one hand and among the 

surface harmonic functions on the other hand (Heiskanen and Moritz, 1967). Most 

common, however, are the geoid, anomaly and coefficient degree variances. The 

(positive) degree variance expresses how much signal power (content) is implied by all 

the coefficients belonging to a specific degree, in a global sense. It is usually referred to 

as the power spectrum. Hence, the variation of power spectra with  the degree describes 

in a practical way the rate of  decay of the anomalous signal as the degree increases. The 

geoid, gravity anomaly and coefficient spectra (degree variances) are, respectively, given 

(in spherical approximation) as 
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where R and G' are the mean radius of the Earth and the mean gravity, respectively. If the 

harmonic coefficients in the above formulas are replaced with their error estimates, σC*nm 

& σSnm, one obtains the so-called error degree variances (error spectra). Thus, one obtains 

the geoid, anomaly and coefficient error degree variances as follows 
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The (positive) error degree variance expresses how much signal power error of a given 

anomalous quantity exists, in a global sense, for all the coefficients of a specific degree. 

In general, the error degree variances and degree variances are very useful in covariance 

function modeling (Tscherning, 1993). 

 

3 Harmonic coefficients and their uncertainties 

 

             Figures (1a) and (1b) show two gray scaled contour maps for the corrections 

applied to the EGM96 C and S-coefficients, respectively, from degree and order 2,0 to 

degree and order 360. The numerical levels of the corrections as well as the contour 

interval could be deduced from the gray scale. These graphical plots were outlined for the 

sake of an objective and detailed overview of the corrections received by the various 

spectral domains. Clearly, very significant values for the corrections could be recovered. 

However, the corrections for the sectorial (m=n) and near sectorial (m≈n) harmonic 

coefficients were negligible for most of the high degrees. These negligible corrections 

were more pronounced, in both magnitude and number after degree and order 150. Thus 

the relevant coefficients could be very well represented by the EGM96 model, or the 

Egyptian data could be poor in these terms, due to their geographical location. The 

coefficients from degree and order (2,0) to (10,10) have received very small corrections, 

but within the number of significant figures of the original coefficients. Finally, one can 

easily notice that the two maps are similar. 

 

              Figures (2a) and (2b) show two maps for the standard errors of the EGM96 

model C and S-coefficients, respectively. The two maps are similar. One can easily 

distinguish between two spectral bands with different error characteristics. The first band 

is obviously from degree and order 2,0 to degree and order 70, whereas the second error 

band ranges between degree and order 71,0 to degree and order 360.  The first region 

begins with very small values for the standard errors, then a hill appears in the middle of 

that region and the errors decrease to reach a local minimum at degree 70. A sudden 
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jump, which is  independent on the order, occurs at degree 70. In the second stage the 

standard errors decreases as the degree increases, with a slight dependence on the 

coefficients’ orders. The jump at degree 70 is an indication that the high quality start 

70,70 satellite terms, although they were mixed with global mean terrestrial data in the 

solution steps for the EGM96 model, these terms has preserved their own error 

characteristics. As the coefficients’ magnitudes are in general damping as the degree 

increases,  the second trend of the standard errors ensures the high quality of the EGM96 

harmonic model. Namely, the damping coefficients have acceptable decreasing error 

estimates. 

 

        Figures (3a) and (3b) plot two maps for the standard errors of the EGM96EGR 

model C and S-coefficients, respectively. As above, the two maps are similar. Also two 

spectral bands with different error characteristics manifest themselves. The first band is 

obviously from degree and order 2,0 to degree and order 70, whereas the second error 

band ranges between degree and order 71,0 to degree and order 360. The main features of 

the contour lines in both trends, however, are fully independent on the coefficients’ 

orders. The first region begins with very small values for the standard errors, then a local 

maximum appears in the middle of that region and the errors decrease to reach a local 

minimum at degree 70. Again, a sudden jump, which is also independent on the order, 

occurs at degree 70. In the second stage, the standard errors decrease gently as the degree 

increases. These latter two maps show, in general, how efficiently the original model 

(scaled) error degree variances have succeeded in modeling the covariance function 

(Tscherning, 1993), prior to the solution for the coefficients’ corrections. This is evident, 

because the error estimates scheme of the EGM96EGR coefficients resembles to a great 

extent that pertaining to the original model.  

 

        In general, although the least-squares estimation of spherical harmonic coefficients 

results in coefficients’ values that are quite consistent with the input information, the 

associated coefficients error estimates are of a rather pessimistic nature. This can be 

related to the fact that the computation of the coefficients error estimates by least-squares 

collocation, using an isotropic covariance function, is based on the assumption that the 

coefficients pertaining to a specific degree all belongs to the same normal distribution 

(Tscherning, 2001). This affects more the lower degrees. This is evident because the 

larger the degree, the more is the number of relevant coefficients, and hence, the more 

realistic is the normal distribution hypothesis. Thus, the rapid decrease of the error 

estimates, in the second error band, as the degree increases could be, among other factors, 

related to this effect. This can also be considered in general as the main reason, why the 

resulting error estimates for the refined coefficients are larger than those of the original 

coefficients. Moreover, the merely dependence of the error estimates on the degree in 

Figures (3a) and (3b) could be regarded to that statistical ambiguity, since the coefficients 

belonging to a specific degree have their own statistical characteristics. 
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Figure (1a): Contour map for the EGM96 C-corrections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Figure (1b): Contour map for the EGM96 S-corrections 
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Figure (2a): Contour map for the standard errors of the EGM96 C-coefficients  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (2b): Contour map for the standard errors of the EGM96 S-coefficients 
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Figure (3a): Contour map for the standard errors of the EGM96EGR C-coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3b): Contour map for the standard errors of the EGM96EGR S-coefficients 
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4 The EGM96EGR and EGM96 low frequency gravity field in Egypt  

 

          In order to investigate the effect of the refinement of the EGM96 harmonic model, 

based on the local gravity data, the long wavelength geoidal heights N, gravity anomalies 

Δg, the meridian deflection components ξ and the prime vertical deflection components η 

were computed from both the EGM96EGR and EGM96 models in Egypt. These 

quantities were computed, using Eq. (2) through (5), at the nodes of a 0.5°x0.5° grid 

covering the Egyptian territory (the region bounded by 22°N≤φ≤32°N; 25°E≤λ≤36°E). 

Table (1) through (4) outline a comparison of the statistics of the four gravimetric 

elements, respectively, computed from both models, relative to the WGS-84 reference 

ellipsoid. 

 

 
Table (1): EGM96EGR versus EGM96 geoidal heights in Egypt 

(units: meters) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR N 13.862 2.902 14.162 6.870 21.010 

EGM96 N 13.834 2.819 14.118 7.532 21.099 

EGM96EGR N – EGM96 N 0.029 0.921 0.921 -2.098 4.893 

 

 

Table (2): EGM96EGR versus EGM96 gravity anomalies in Egypt 

(units: mgals) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR Δg 5.491 26.125 26.669 -75.360 143.063 

EGM96 Δg 5.597 24.965 25.560 -125.749 152.968 

EGM96EGR Δg – EGM96 Δg -0.106 13.998 13.984 -37.385 85.289 

 
 

Table (3): EGM96EGR versus EGM96 meridian deflection components in Egypt 

(units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR ξ -0.613 4.448 4.485 -17.454 23.104 

EGM96 ξ -0.635 4.010 4.056 -16.621 22.849 

EGM96EGR ξ – EGM96 ξ  0.023 2.069 2.067 -9.914 8.939 

 

 

Table (4): EGM96EGR versus EGM96 prime vertical deflection components in Egypt 

(units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR η 0.574 4.073 4.109 -24.189 10.974 

EGM96 η 0.557 4.216 4.248 -32.054 15.211 

EGM96EGR η – EGM96 η 0.018 2.147 2.145 -8.506 10.960 
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From the above tables, it is clear that very significant differences exist, regarding the four 

considered gravimetric quantities. It seems that the refined model possesses very 

significant additional information, based on the incorporated new local data. Errors at the 

above numerical levels would be committed during the use of the EGM96 model as a 

reference field in a local gravity field modeling. One could expect that the long 

wavelength miss-modeling, using the EGM96 harmonic model, will be more obvious, if 

the treated gravimetric element happens to be gravity anomalies. In other words, the 

gravity anomaly is more sensitive to the absence of local data from a given geopotential 

model. This could be intuitively referred to the (n-1) magnification factor in Eq. (3). 

Regarding the geoidal heights and the two deflection components, this sensitivity seems 

to be considerably smaller. The latest statements should be taken with caution, since the 

situation could depend on the maximum degree of the harmonic model, the smoothness 

of the local gravity field and the geographical location of the region under study, implied 

by the relevant surface harmonic functions.  

 

5 The far zone effect of the local modification 

       

         In order to investigate the effect of the local modification, according to the Egyptian 

data, on the EGM96 far zone low frequency behavior, two test remote zones far from 

Egypt were considered. The first test zone has previous local data contribution to the 

EGM96 harmonic model (Kearsley et al., 1998). It is the region of the Skagerrak Sea 

between Denmark and Norway and is bounded by (56°N≤φ≤59°N; 6°E≤λ≤12°E). 

Conversely, the second test zone has no local data contribution to the original model 

(Lemoine et al., 1996). This zone lies in middle Africa and is bounded by (5°N≤φ≤15°N; 

20°E≤λ≤30°E). Again, the long wavelength geoidal heights, gravity anomalies, the 

meridian and the prime vertical deflection components were computed from both the 

EGM96EGR and EGM96 models, relative to the WGS-84 reference ellipsoid, at the 

nodes of two 0.5°x0.5° grids covering the two test zones. 

 

         Concerning the first test zone, Table (5) through (8) illustrate a comparison of the 

statistics of the four gravimetric quantities, computed from both models. Clearly, very 

small differences exist between the two models, regarding all the four anomalous 

elements, compared to those outlined in Table (1) through (4). These differences can be 

neglected and considered within the common measuring (and prediction) accuracy of the 

eventually met anomalous quantities, during a local gravity field modeling. Thus, it is 

clear that the addition of the local data in Egypt results in a far zone lower degree field 

that is almost identical to that computed from the original model, in regions that have 

data contribution to that model. Obviously, both harmonic models are nearly equally 

tuned to reflect the effect of the local data, which was previously incorporated into the 

original model from that zone. This can be regarded to the orthogonality among the 

surface harmonic functions, Ynm(ψ,λ), which is by definition used in any technique for 

the evaluation of harmonic coefficients. In other words, the spherical harmonic 

coefficients are, in a general sense, weighted  mean values of the anomalous potential, 

which are weighted with a function that is theoretically equal to one in the considered 

area and zero outside this area (Tscherning, 1974). This weighting is implicitly 

implemented via the surface harmonics, Ynm(ψ,λ), during the expansion of the various 
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anomalous elements in spherical harmonic series (Eq. (1) through (5)). However, due to 

the inevitable uncertainties inherent into the spherical harmonic coefficients, this 

orthogonality can be slightly affected, and this could be the reason behind the very small 

differences resulting in Table (5) through (8).  

 
 

Table (5): EGM96EGR versus EGM96 geoidal heights in the first far zone 

(units: meters) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR N 39.466 2.348 39.535 34.717 44.970 

EGM96 N 39.465 2.349 39.534 34.719 44.972 

EGM96EGR N – EGM96 N 0.001 0.002 0.003 -0.004 0.006 

 

 

Table (6): EGM96EGR versus EGM96 gravity anomalies in the first far zone 

(units: mgals) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR Δg 6.741 16.211 17.475 -18.211 67.515 

EGM96 Δg 6.729 16.216 17.474 -18.229 67.542 

EGM96EGR Δg – EGM96 Δg 0.013 0.043 0.045 -0.077 0.106 

 

 

Table (7): EGM96EGR versus EGM96 meridian deflection components 

 in the first far zone (units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR ξ -0.902 2.725 2.856 -8.186 4.089 

EGM96 ξ -0.904 2.726 2.858 -8.185 4.080 

EGM96EGR ξ – EGM96 ξ 0.002 0.007 0.008 -0.017 -0.017 

 
 

Table (8): EGM96EGR versus EGM96 prime vertical  deflection components 

 in the first far zone (units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR η 3.533 2.712 4.444 -5.480 10.248 

EGM96 η 3.533 2.711 4.444 -5.475 10.244 

EGM96EGR η – EGM96 η 0.000 0.005 0.005 -0.012 0.011 

 

          

            

             Concerning the second test zone, Table (9) through (12) show a comparison of 

the statistics of the four gravimetric functions, computed from both models. Again, very 

small differences exist between the two models, concerning the four anomalous elements, 

compared to those outlined in Table (1) through (4). Thus, it is clear that the addition of 

the local data in Egypt did not affect the second far zone computed lower degree field, 
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although this second zone has no data contribution to that model. It is clear that both 

models recover almost identically the low degree satellite terms only. Namely, both 

(original and refined) models recover the satellite information relevant to that zone. 

Among all the global satellite data,  only this pertaining to the region under investigation 

survives (is accounted for), as a consequence of the orthogonality among the surface 

harmonic functions, Ynm(ψ,λ). However, the small discrepancies in this region are 

slightly greater than those of Table (5) through (8). This can be attributed to the fact that 

the orthogonality contamination by the coefficients’ uncertainties is more pronounced in 

this second zone, since that happens to be relatively geographically nearer to Egypt than 

first zone. 

 

 

 

 
Table (9): EGM96EGR versus EGM96 geoidal heights in the second far zone 

(units: meters) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR N -1.642 6.110 6.320 -12.616 10.732 

EGM96 N -1.644 6.110 6.321 -12.635 10.737 

EGM96EGR N – EGM96 N 0.001 0.017 0.017 -0.036 0.046 

 

 

Table (10): EGM96EGR versus EGM96 gravity anomalies in the second far zone 

(units: mgals) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR Δg -4.370 14.415 15.047 -52.760 46.420 

EGM96 Δg -4.378 14.434 15.068 -52.826 46.637 

EGM96EGR Δg – EGM96 Δg 0.009 0.187 0.187 -0.474 0.566 

 
 

Table (11): EGM96EGR versus EGM96 meridian deflection components 

 in the second far zone (units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR ξ -3.233 2.053 3.828 -9.398 4.220 

EGM96 ξ -3.231 2.056 3.828 -9.409 4.239 

EGM96EGR ξ – EGM96 ξ -0.002 0.038 0.038 -0.112 0.087 

 

 

Table (12): EGM96EGR versus EGM96 prime vertical  deflection components 

 in the second far zone (units: arc seconds) 

 

Item Mean  Std. Dev. RMS Minimum Maximum 

EGM96EGR η 1.289 1.897 2.291 -4.293 7.723 

EGM96 η 1.289 1.896 2.291 -4.297 7.714 

EGM96EGR η – EGM96 η 0.000 0.016 0.016 -0.052 0.045 
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6 Spectral Analysis 

 

 

 

       In order to detect the impact of the incorporation of the local data into the harmonic 

model on its power spectra and error spectra, the coefficient, geoid and anomaly degree 

variances and error degree variances were computed for the spectral range from degree 2 

to degree 360. Figure (4a) plots a comparison between the coefficient degree variances 

curves pertaining to the two models. According to the plot scale, the curve belonging to 

the  refined model apparently coincides with that of the original model. In general, the 

two curves show the expected trend for the decrease of the coefficient power as the 

degree increases, according to Kaula’s rule  of  thumb  (Rapp, 1972).   These similar 

trends  ascertain  that the local data corrections carry the random nature of the 

gravimetric anomalous signals and the spectral properties of the EGM96 model were not 

deformed, due to the addition of the local data. Figure (4b) gives an insight into the 

differences between the coefficient degree variances of both models. Clearly, the 

differences are relatively large in magnitude for lower degrees,  randomly oscillating 

about zero and are damping as the degree increases. Figure (5a) gives a comparison 

between the two relevant geoid degree variances curves, whereas Figure (5b) plots the 

associated differences among the  geoid degree variances. It is obvious that the curves in 

Figures (5a) & (5b) resemble those of  Figures (4a) & (4b), respectively. This is because 

the geoid degree variance is simply the coefficient degree variance, scaled by R
2
, as 

implied by Eqs. (6) and (8). Hence, the same comments concerning the coefficients 

degree variances for the two models are still valid for the geoid degree variances. 

However, the differences among power spectra in terms of geoid undulations can be 

considered very small. 

 

 

 

       Figure (6a) illustrates the anomaly degree variances curves pertaining to the EGM96 

and EGM96EGR harmonic models. As it was the case for coefficient and geoid degree 

variances, the two anomaly power spectra curves almost coincide. However, an insight 

into the differences among the anomaly degree variances curves, Figure (6b), one could 

notice that the differences are firstly small for lower degrees, then they become relatively 

larger for intermediate degrees and finally the trend is again damping as the degree 

increases. This is expected, because the gravity anomalies tend to have most of its power 

in relatively higher degrees. As above, the differences are randomly oscillating about 

zero. And the differences among gravity anomaly power spectra are, in general, very 

small. It should be emphasized that the small differences in power spectra is only a 

measure of how the harmonic model has been affected, in a global sense, as a 

consequence of the incorporation of the local data into it. This is true, since the power 

spectra or even the error spectra are not functions of a specific geographical location, as it 

is clear from Eq. (6) to (11). Analogous to the discussions in Sections 4 & 5 concerning 

Egypt and the far zones, it is expected that the local near zone and far zone effects of the 

refinement on the power (and error) spectra would only be obvious in a local covariance 

function modeling.  
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Figure (4a): The coefficient degree variances curves for the EGM96EGR and 

EGM96 harmonic models (log scale) 

Figure (4b): The differences among the coefficient degree variances for 

the EGM96EGR and EGM96 harmonic models 

 

 

 

Figure (4) 
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Figure (5a): The geoid degree variances curves for the EGM96EGR and 

EGM96 harmonic models (log scale) 

 

 

 

Figure (5b): The differences among the geoid degree variances for the 

EGM96EGR and EGM96 harmonic models 

 

 

Figure (5) 



 06 

Figure (6a): The gravity anomaly degree variances curves for the 

EGM96EGR and EGM96 harmonic models (log scale) 

 

 

Figure (6b): The differences among the gravity anomaly degree variances for the 

EGM96EGR and EGM96 harmonic models (log scale) 

 

 

 

Figure (6) 
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       Finally, Figures (7), (8) and (9) show comparisons regarding the two models’ 

coefficient, geoid and anomaly error degree variances curves, respectively. It is clear how 

the error degree variances , and hence, the error estimation characteristics of the refined 

model have the same structure as those of the original one. This was previously noticed in 

Figures (2a &2b) and (3a &3b). Also Figure (7) through (9) ensure that there exist two 

error spectral bands with different characteristics. However, due to the previously 

discussed pessimistic nature of the refined model error estimates, the coefficient, geoid 

and anomaly error spectra of the refined model are considerably larger than those of the 

original model. 

 

 

 

 

 

 

 

 

 

 
Figure (7): The coefficient error degree variances curves for the  

EGM96EGR and EGM96 harmonic models  

 

 

 

 

 



 08 

 
Figure (8): The geoid error degree variances curves for the 

EGM96EGR and EGM96 harmonic models 

 

 

 
Figure (9): The gravity anomaly error degree variances curves for the 

EGM96EGR and EGM96 harmonic models 
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7 Conclusions 

 

          Based on the current study, it is obvious that concerning Egypt, the EGM96EGR 

harmonic model have very significant local low frequency information over the EGM96. 

This was found regarding the four investigated gravimetric quantities. It is also concluded 

that the addition of new local data, to a specific existing harmonic model, has practically 

no effect on the computed far zone low frequency information. This was proved to be 

true for far zones with or without previous data contribution to the EGM96 model. Based 

on the spectral analysis performed on the two models, the refined model power spectra 

trends almost coincide with those of the original model. The differences among the 

coefficient, geoid and anomaly power spectra of the two models were found to be in 

general randomly oscillating about zero and damping as the degree increases. 

Specifically, the differences regarding the geoid and gravity anomaly power spectra were 

found to be small. However, due to the pessimistic nature of LSC coefficients’ error 

estimates, the error degree variances (error spectra) of the refined model were greater 

than those of the original one. It is recommended to use the EGM96EGR model in local 

gravity field modeling in the near future. By implementing this task, the local effect of 

the power and error spectra would be clear during the covariance function modeling. 
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